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Abstract. The network approach plays a distinguished role in contemporary science of complex sys-
tems/phenomena. Such an approach has been introduced into seismology in a recent work [S. Abe, N.
Suzuki, Europhys. Lett. 65, 581 (2004)]. Here, we discuss the dynamical property of the earthquake net-
work constructed in California and report the discovery that the values of the clustering coefficient remain
stationary before main shocks, suddenly jump up at the main shocks, and then slowly decay following a
power law to become stationary again. Thus, the dynamical network approach characterizes main shocks
in a peculiar manner.

PACS. 89.75.Da Systems obeying scaling laws – 91.30.-f Seismology – 05.65.+b Self-organized systems

Looking at seismic data from the physics viewpoint, it
may be of interest to recognize that it is essentially a
field-theoretical system. It consists of the series of a set
of values of occurrence time, hypocenter, and magnitude
of each earthquake. In other words, seismic moment (its
logarithm being magnitude) as a field strength is defined
on each discrete spacetime point. However, unlike ordi-
nary field dynamics in physics, both the field strength
and spacetime points are inherently random. In spite of
such apparent complicatedness, known empirical laws are
rather simple. There are in fact two celebrated classical
examples. One is the Gutenberg-Richter law [1] for the
relationship between frequency and seismic moment. The
other is the Omori law [2] for the temporal decay of fre-
quency of aftershocks. Both of them are power laws, indi-
cating complexity/criticality of seismicity.

Instantaneous release of huge energy by a main shock
can be thought of as a “quenching” process. The disor-
der of a complex landscape of the stress distribution at
faults in the relevant area is then reorganized by it. Ac-
cordingly, a swarm of aftershocks may follow. This process
constitutes nonstationary parts of a seismic time series,
and, due to the power-law nature of the Omori law, “re-
laxation” to a stationary state is very slow. In a recent
work [3], it has been found that there are striking sim-
ilarities between the aftershock phenomenon and glassy
dynamics, including aging and scaling.

In the previous works [4,5], we have studied the spatio-
temporal complexity of seismicity and found that both the
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spatial distance and time interval between two successive
earthquakes obey specific but remarkably simple statisti-
cal laws. Those results indicate that successive events are
indivisibly correlated, no matter how large their spatial
separation is. In fact, there is an investigation [6], which
points out that an earthquake can be triggered by a fore-
going one, which is more than 1000 km away. This implies
that the seismic correlation length may be enormously
large, exhibiting a strong similarity to phase transitions
and critical phenomena. Accordingly, it is inappropriate
to put spatial windows in analysis of seismicity, in gen-
eral, and a relevant geographical region should be treated
in a nonreductionistic manner.

To characterize complexity of event-event correlation
in seismicity, we have recently proposed a network ap-
proach [7–10], in which seismic data is mapped to a grow-
ing stochastic graph. This graph, termed earthquake net-
work, is constructed as follows. A geographical region
under consideration is divided into a lot of small cubic
cells. A cell is regarded as a vertex of a network if earth-
quakes with any values of magnitude occurred therein.
Two successive events define an edge between two vertices.
If they occur in the same cell, a loop is attached to that
vertex. The edges efficiently represent event-event corre-
lation mentioned above. The network thus constructed
represents dynamical information of seismicity in a pe-
culiar manner. (Another procedure of constructing an
earthquake network, which is more complicated than the
present one introducing seven parameters including the
spatial distance, time interval, magnitude, and so on, is
considered for example in Ref. [11].) Several comments on
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this construction are in order. Firstly, it contains a single
parameter, the cell size, which determines a scale of coarse
graining. Once the cell size is fixed, an earthquake network
is unambiguously defined. Since there are no a priori oper-
ational rules to determine the cell size, it is of importance
to examine the dependence of the property of an earth-
quake network on it. Secondly, an earthquake network is a
directed graph in its nature. Directedness does not bring
any difficulties to statistical analysis of connectivity (i.e.,
degree, the number of edges attached to the vertex un-
der consideration) since, by construction, in-degree and
out-degree [12] are identical for each vertex with possi-
ble exceptions for the first and last ones in the analysis:
that is, in-degree and out-degree do not have to be distin-
guished each other in the analysis of connectivity. How-
ever, directedness becomes essential when the path length
(i.e., the number of edges between a pair of connected
vertices) and the period (implying after how many subse-
quent earthquakes the event returns to the initial vertex)
are considered, for example. Finally, directedness has to
be ignored and the path length should be defined as the
smallest value among the possible numbers of edges con-
necting a pair of vertices, when the small-world nature of
an earthquake network is investigated. There, loops have
to be removed and multiple edges be replaced by single
edges. That is, a full directed earthquake network is re-
duced to a corresponding simple undirected graph (see
Fig. 1 for the schematic description).

An earthquake network and its reduced simple graph
constructed in this way are found to be scale-free [7] and
of the small world [8], exhibit hierarchical organization
and assortative mixing [9], and possess the power-law pe-
riod distribution [10]. A main reason why an earthquake
network is heterogeneous is due to the empirical fact that
aftershocks associated with a main shock tend to return
to the locus of the main shock, geographically, and there-
fore the vertices of main shocks play roles of hubs of the
network.

The network approach has been used in the litera-
ture [13] to examine if self-organized-criticality models can
reproduce these notable features.

Here, we report a successful application of the dynam-
ical network approach to seismicity. We find through care-
ful analysis that the clustering coefficient exhibits a salient
behavior: it is stationary before a main shock, jumps up
at the main shock, and then slowly decays as a power law
to become stationary again. We ascertain this behavior
for some main shocks occurred in 1990’s in California.
Thus, the dynamical network approach characterizes a
main shock in a peculiar manner.

There are several known quantities that can struc-
turally characterize a complex network. Among them, here
we consider the clustering coefficient introduced in ref-
erence [14]. This quantity is defined for a simple graph,
in which there are no loops and multiple edges. A sim-
ple graph is conveniently described by the adjacency ma-
trix [15], A = (a ij) (i, j = 1, 2, . . . , N with N being
the number of vertices contained in the graph). a i i = 0,
and a ij = 1 (0) if the ith and jth vertices are connected

Fig. 1. Schematic descriptions of an earthquake network.
(a) A full directed network. The vertices with high values of
connectivity, A, B, and C, correspond to main shocks. (b) The
simple undirected graph reduced from the full network in (a).

(unconnected) by an edge. The clustering coefficient, C,
is then given by

C =
1
N

N∑

i=1

c i, (1)

where

c i =
2 e i

k i(k i − 1)
(2)

with
e i = (A3) i i (3)

and k i the value of connectivity of the ith vertex. This
quantity has the following meaning. Suppose that the ith
vertex has k i neighboring vertices. At most, k i(k i − 1)/2
edges can exist between them. c i is the ratio of the actual
number of edges of the ith vertex and its neighbors to
this maximum value. Thus, it quantifies the degree of ad-
jacency between two vertices neighboring the ith vertex.
C is its average over the whole graph. In an earthquake
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network, c i quantifies how strongly two aftershocks associ-
ated with a main shock (as the ith vertex) are correlated,
for example.

Now, we address the question as to how the clus-
tering coefficient changes in time as an earthquake net-
work grows. For this purpose, we have studied the cat-
alog of earthquakes in California, which is available at
URL http://www. data.scec.org/. In particular, we
have focused our attention to three major shocks oc-
curred in 1990’s: (a) the Joshua Tree Earthquake (M6.1)
at 04:50:23.20 on April 23, 1992, 33◦57.60′N latitude,
116◦19.02′W longitude, 12.33 km in depth, (b) the Lan-
ders Earthquake (M7.3) at 11:57:34.13 on June 28, 1992,
34◦12.00′N latitude, 116◦26.22′W longitude, 0.97 km in
depth, and (c) the Hector Mine Earthquake (M7.1) at
09:46:44.13 on October 16, 1999, 34◦35.64′N latitude,
116◦16.26′W longitude, 0.02 km in depth. We have taken
the intervals of the seismic time series containing these
events, divided the intervals into many segments, and con-
structed the earthquake network of each segment. Then,
we have calculated the value of the clustering coefficient
of each network. In this way, dynamical evolution of clus-
tering has been explored.

In Figure 2, we present the results on evolution of the
clustering coefficient in the case when the length of the
segments is fixed to be 240 h long. Here, the cell size
5 km × 5 km× 5 km is examined. A remarkable behavior
can be appreciated: the clustering coefficient stays sta-
tionary before the main shocks, suddenly jumps up at the
moments of the main shocks, and then gradually decays.
In the course of decay, some relative maxima appear. A
detailed study shows that they are often, but not always,
associated with strong aftershocks and are sensitive to the
cell size.

To clarify the property of the slow decay in more detail,
we present Figure 3, in which shorter-time analysis with
24 h is performed by examining two different cell sizes,
5 km × 5 km × 5 km and 10 km × 10 km × 10 km. As
can clearly be appreciated, the “cumulative” clustering
coefficient,

C (� n) =
n∑

M=1

CM , (4)

obeys a definite law, where CM stands for the clustering
coefficient of the network constructed in the interval 24×
(M − 1) ∼ 24 × M [hours] after the moment of the main
shock at M = 0, and n = (hours)/24. Indeed, it is well
represented by the following power law:

CM ∼ 1
(1 + M/M0)α

, (5)

where α and M0 are positive constants, and their values
are given in Table 1.

As can be seen in Table 1, the value of M0 rapidly
increases with respect to the cell size. This can be under-
stood as follows. Upon constructing a simple graph, the
larger the cell size is, the more loops are removed and
multiple edges are replaced by single edges. Accordingly,
the simple graph grows slower. This is the reason why

Fig. 2. Evolution of the (dimensionless) clustering coefficient
during each 240 h. The origins are adjusted to the moments
of the main shocks, that is, (a) the Joshua Tree Earthquake,
(b) the Landers Earthquake, and (c) the Hector Mine Earth-
quake. The numbers of earthquakes, vertices, and simple edges
in the time segments in which the clustering coefficient takes
its maximum and minimum values are respectively as follows:
(a) 3519, 216, and 746 in the segment 240 × 0 ∼ 240 × 1, and
546, 210, and 426 in the segment 240 × 5 ∼ 240 × 6, (b) 5622,
738, and 3943 in the segment 240× 0 ∼ 240× 1, and 487, 275,
and 463 in the segment 240×28 ∼ 240×29, and (c) 3851, 572,
and 2022 in the segment 240 × 0 ∼ 240 × 1, and 440, 278, and
413 in the segment 240 × 28 ∼ 240 × 29.

the characteristic “time scale”, M0, of evolution becomes
larger as the cell size increases.

We confidently believe that the above discovery is uni-
versal, independently of geographical regions to be ana-
lyzed. Although we do not present here, the same trend
of the clustering coefficient was, in fact, recognized in the
analysis of the seismic data taken in Japan.
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Fig. 3. Evolution of the (dimensionless) cumulative clustering coefficient defined in equation (4) during each 24 h. The solid
curves are due to the model in equation (4) with the form in equation (5). (a-1, b-1, c-1) and (a-2, b-2, c-2) are the results
for the cell sizes, 5 km × 5 km × 5 km and 10 km × 10 km × 10 km, respectively, for (a) the Joshua Tree Earthquake, (b) the
Landers Earthquake, and (c) the Hector Mine Earthquake. The values of the parameters in equation (5) are given in Table 1.

Table 1. The values of the parameters in equation (5) used in Figure 3.

major event cell size(km × km × km) M0(×102) α
Joshua Tree Earthquake 5 9.84 2.2

10 48.0 4.0
Landers Earthquake 5 0.618 0.33

10 1.83 0.40
Hector Mine Earthquake 5 0.122 0.55

10 1.66 0.59
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In conclusion, we have found that the clustering co-
efficient of the evolving earthquake network remains sta-
tionary before a main shock, suddenly jumps up at the
main shock, and then slowly decays to become stationary
again following the power-law relaxation. In this way, the
clustering coefficient is shown to successfully characterize
main shocks. We would like to emphasize that the power-
law decay after a main shock described in equation (5)
might remind one of the Omori law, but actually they are
not directly related to each other. This is because, in the
definition of the clustering coefficient, loops are removed
and multiple edges are replaced by single edges, that is, a
number of aftershocks are excluded in the analysis.

One of the authors (S.A.) would like to thank Carmen P. C.
Prado for discussions.
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